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A study has been performed of the interaction of periodic vortex rings with a central
columnar vortex, both for the case of identical vortex rings and the case of rings of
alternating sign. Numerical calculations, both based on an adaptation of the
Lundgren–Ashurst (1989) model for the columnar vortex dynamics and by numerical
solution of the axisymmetric Navier–Stokes and Euler equations in the vor-
ticity–velocity formulation using a viscous vorticity collocation method, are used to
investigate the response of the columnar vortex to the ring-induced velocity field. In all
cases, waves of variable core radius are observed to build up on the columnar vortex
core due to the periodic axial straining and compression exerted by the vortex rings.
For sufficiently weak vortex rings, the forcing by the rings serves primarily to set an
initial value for the axial velocity, after which the columnar vortex waves oscillate
approximately as free standing waves. For the case of identical rings, the columnar
vortex waves exhibit a slow upstream propagation due to the nonlinear forcing. The
cores of the vortex rings can also become unstable due to the straining flow induced
by the other vortex rings when the ring spacing is sufficiently small. This instability
causes the ring vorticity to spread out into a sheath surrounding the columnar vortex.
For the case of rings of alternating sign, the wave in core radius of the columnar vortex
becomes progressively narrower with time as rings of opposite sign approach each
other. Strong vortex rings cause the waves on the columnar vortex to grow until they
form a sharp cusp at the crest, after which an abrupt ejection of vorticity from the
columnar vortex is observed. For inviscid flow with identical rings, the ejected vorticity
forms a thin spike, which wraps around the rings. The thickness of this spike increases
in a viscous flow as the Reynolds number is decreased. Cases have also been observed,
for identical rings, where a critical point forms on the columnar vortex core due to the
ring-induced flow, at which the propagation velocity of upstream waves is exactly
balanced by the axial flow within the vortex core when measured in a frame translating
with the vortex rings. The occurrence of this critical point leads to trapping of wave
energy downstream of the critical point, which results in large-amplitude wave growth
in both the direct and model simulations. In the case of rings of alternating sign, the
ejected vorticity from the columnar vortex is entrained and carried off by pairs of rings
of opposite sign, which move toward each other and radially outward under their self-
and mutually induced velocity fields, respectively.

1. Introduction

In any three-dimensional flow in which vortex structures of very different strengths
coexist in the vicinity of each other, the weaker vortices will tend to wrap around the
stronger vortex structures. As this wrapping proceeds, the weaker vortices become
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F 1. Result of a numerical simulation of the wrapping of ambient vorticity around a columnar
vortex, showing the formation of wrapped ring-like vortices of opposite sign. (Reproduced with
permission from Melander & Hussain 1993.)

increasing axisymmetric and may merge to create a smaller number of stronger vortices
wrapped around a central (nearly columnar) vortex structure. A demonstration of the
wrapping and amalgamation of weak vortices around stronger vortices is given in
direct numerical simulations by Melander & Hussain (1993) for a columnar vortex
immersed in an initially homogeneous turbulent flow field. Melander & Hussain
observed that wrapping of the small-scale vorticity from the background turbulence
about the large columnar vortex leads to an inverse cascade, which results in the
formation of approximately periodic ring-like structures with alternating signs wrapped
around the columnar vortex, as shown in figure 1. The existence of wrapped vortices
of alternating sign around large-scale turbulent vortex structures has been confirmed
experimentally, e.g. in the study by Glezer & Coles (1990) of turbulent vortex rings.
Wrapping of ambient turbulence around nearly columnar vortices has also been shown
to play a central role in determining the decay rate of aircraft trailing vortices in the
experiments of Liu (1992) for cases with sufficiently intense atmospheric turbulence.

Wrapping of vortex structures may also occur due to three-dimensional instability
of various quasi-parallel vortex systems, such as mixing layers (Bernal & Roshko
1986), vortex street wakes (Mittal & Balachandar 1995) or Taylor vortices (Sreedhar
& Ragib 1994). In such flows, certain of the vortices become unstable due either to the
presence of ambient shear or to interactions with other vortices (Pierrehumbert &
Widnall 1982; Robinson & Saffman 1987). The unstable vortices typically elongate
streamwise in the form of hairpins (with legs of alternating sign of vorticity), which
interact with and sometimes wrap around other (nearly columnar) vortices. Other
sources of streamwise vortex generation are discussed by Mittal & Balachandar (1995).
Numerous examples of secondary vortex wrapping developing from the instability of
nominally two-dimensional vortex flows are given in recent review articles by Lesieur
(1996) and Sarpkaya (1996).

In a wide range of flow conditions, vortex wrapping has a controlling effect on vortex
disruption in problems of three-dimensional vortex–body interaction (Kim &
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Komerath 1995; Krishnamorthy & Marshall 1997), which has important applications
in the area of helicopter interactional aerodynamics (Sheridan & Smith 1980). If a
columnar vortex of sufficient strength is brought in the vicinity of a solid body, the
vortex-induced boundary layer will separate from the body surface and wrap around
the columnar vortex in the form of a series of hairpin vortices. The wrapped vorticity
is observed to induce large helical and axisymmetric wave motions on the columnar
vortex, sometimes even leading to disruption or bursting of the columnar vortex before
it comes in contact with the solid body.

Three-dimensional wrapping of one or more (weaker) vortex structures around a
(stronger) quasi-columnar vortex may involve complex flow physics, including bending
and axisymmetric wave response of the quasi-columnar vortex, ejection of vorticity
from the columnar vortex, impact of the head region of hairpin eddies into the
columnar vortex core, and merger of the wrapped vortex structures. Some of these
physical processes are fairly well understood, such as bending of vortices under their
mutual interaction. Similarly, quite a lot of work has been performed on vortex merger
in two dimensions (e.g. Melander, Zabusky & McWilliams 1988; Dritschel & Waugh
1992; Waugh 1992), which could readily be extended to the axisymmetric case. The
current paper focuses instead on the process of vorticity ejection from the columnar
vortex and the effect of axial waves of variable core area on the ejection process. While
several previous papers (e.g. Melander & Hussain 1993; Mittal & Balachandar 1995)
indicate the existence of deformation of the columnar vortex due to the wrapped
vortices, including the formation of waves of variable core area, there seems to have
been no systematic study of the columnar vortex response and vorticity ejection under
the influence of these wrapped vortices.

The paper will consider an idealized flow in which the wrapped vortices are rings
around a columnar vortex and the flow is constrained to be axisymmetric. The flow is
required to be periodic over a fixed length L along the columar vortex axis. Cases are
considered both for identical vortex rings and for vortex rings of alternating sign. One
vortex ring is included in each computed period for identical vortices and two vortex
rings are included in each period for rings of alternating sign. It is noted that the
simulations performed in the paper suppress the leap-frogging-type instability for a
row of identical rings, as predicted by Levy & Forsdyke (1927). This instability occurs
for all values of the ring radius and separation distance; however, it is quite weak. For
instance, consider two vortex rings with a difference ∆R in ring radius which is much
smaller than the average ring radius R. It is found in the current work that the vortex
ring–columnar vortex interaction occurs in a time interval over which the ring
propagates a length of about one period, L. In this time, the difference in axial position
between two adjacent vortex rings will change due to the leap-frog instability by an
amount of approximately (∆R}R)L. If the ratio ∆R}R is initially small, the leap-frog
instability is negligible over the time period during which the ring–columnar vortex
interaction takes place.

This problem is studied computationally both via numerical simulations of the
axisymmetric Navier–Stokes and Euler equations (in the vorticity–velocity for-
mulation) using a Lagrangian vorticity collocation method (Marshall & Grant 1997)
and via numerical solution of an adaptation of the Lundgren–Ashurst (1989) model for
the columnar vortex dynamics under forcing from a prescribed flow induced by
periodic vortex rings. The vorticity collocation method for axisymmetric swirling flows
uses ring-shaped overlapping vorticity elements, with Gaussian vorticity distribution in
the element cross-sections. Additional blob-like elements are used to resolve the axial
vorticity along the symmetry axis. The induced velocity field is obtained by the Biot–
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Savart integration over the vorticity field, where the element amplitudes are obtained
using the iterative fitting procedure of Marshall & Grant (1996).

The problem is set up in section 2, followed by a brief description of the vor-
ticity collocation method of Marshall and Grant (1997). An adaptation of the
Lundgren–Ashurst model for the columnar vortex dynamics under the ring-induced
velocity field is described in §3. Results of a sample numerical solution are presented
in §4 for free-standing waves on a columnar vortex core, and predictions of the
numerical method of §2 are compared with an analytical solution from the approxi-
mate model of §3. The analytical and computational methods described in §§2 and 3
are used to examine the ring–columnar vortex interaction for the case of identical rings
in §5 and for the case of rings of alternating sign in §6. Conclusions are given in §7.

2. Problem set-up and numerical solution method

We consider the evolution of an axisymmetric swirling flow with periodic vortex
rings enclosing a columnar vortex. The flow is initialized with rings of circular cross-
section, having core radius σ

R
, strength Γ

R
and centroid radial location R in a

cylindrical polar coordinate system. The columnar vortex initially has a uniform core
radius σ

C
and a strength Γ

C
. The vorticity within the rings initially lies in the azimuthal

direction and is proportional to the radial location r, as would be the case for members
of the family of vortex rings considered by Norbury (1973). The vorticity within the
columnar vortex is initially oriented in the axial direction and is uniform with r. The
flow is assumed to remain periodic over a length L along the columnar vortex axis for
all time.

The transport equations for the components (ω
r
,ωθ,ωz

) of vorticity in cylindrical
polar coordinates in an incompressible axisymmetric flow are
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where d}dt is the material derivative, (u, �,w) are the (r, θ, z) components of the velocity
vector u, ~# is the Laplacian operator in cylindrical polar coordinates and ν is the
kinematic viscosity. The vorticity components are subject to the radial boundary
conditions ω

r
¯ωθ ¯ 0 and ¥ω

z
}¥r¯ 0 on the symmetry axis r¯ 0, ωU 0 faster than

r−% as rU¢ and periodic boundary conditions in the axial direction. The flow is
initialized with ω
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and ω
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¯ωθ ¯ 0 within the columnar vortex and ωθ ¯Ar

and ω
r
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z
¯ 0 within the vortex rings. The constant A is set such that the circulation

of each ring is Γ
R

for the case of identical rings and ³Γ
R

for the case of rings of
alternating signs.

The velocity field is obtained as the curl of the vector potential β¯®~#ω, such that
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The Green’s function solution for the components of β is
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where s¯ [(z®z«)#r#(r«)#®2rr« cos (θ®θ«)]"/# and d�«¯ r«dr«dθ«dz«.
The ring–columnar vortex interaction is studied by numerical solution of the system

(1)–(3) using the Lagrangian vorticity collocation method of Marshall & Grant (1997)
for axisymmetric swirling flows. In this method, the vorticity is evolved on a set of N
control points in the (r, z)-plane, which for inviscid flows are advected by the local fluid
velocity. For viscous flows, the control points are advected with an additional
‘diffusion velocity ’ in order to account for the effect of diffusion in spreading the
vorticity support. Given the vorticity values at the control points, the induced velocity
is obtained in the numerical computations by interpolating the vorticity field using a
representation consisting of ring-like elements for points sufficiently far removed from
the symmetry axis and three-dimensional blob-like elements for points lying on the
symmetry axis. This representation may be expressed symbolically as
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The element centroids x
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are advected both by the velocity induced by other vorticity
elements and the element self-induced velocity. The element amplitude G
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the integral of vorticity associated with the control point over the element cross-
section. The weighting function f
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) specifies the distribution of vorticity within

the element core and is normalized such that
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for the ring-like elements and
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for the blob-like elements. Here A denotes the (r, z)-plane, r
n

is the radial position of
control point n and R

E
is the ‘exclusion distance’ of ring-like elements from the

symmetry axis, which is usually taken to be on the order of the radius of the ring-like
elements. In the present computations, both ring-like and blob-like elements are
assumed to have Gaussian vorticity distribution over a cross-section, so we can write
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where δ
n

is the element radius. The normalization constant is obtained as
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for ring-like elements and as
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for blob-like elements.
Substituting (4) into the integrals (3), and using the method of Laplace integrals to

approximate the integrals for small values of δ
n
}r

n
, the induced velocity from the nth

ring-like element at a point (r, z) is obtained from (2) as
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where (G
r
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) are the components of G
n

and K([) and E([) are complete elliptic
integrals. The parameters k
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are defined by
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and ξ
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is a regularization function given by
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This regularization is found to perform well in validation calculations even in cases
where δ

n
}r

n
¯O(1).

Similarly, the velocity induced by the nth blob-like element at a point x is given by
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where P(a, z) is the incomplete gamma function, with limits P¯ 0 at z¯ 0 and P¯ 1
as zU¢, and C

n
is the normalization constant given by (7b). When a¯ 3}2 and

z¯x#, for some real variable x, a convenient expression for P(3}2,x#) is given in terms
of the error function erf (x) as (Abramowitz & Stegun 1965)
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#
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The element amplitudes are obtained by fitting the vorticity representation (4) to the
known vorticity values at the control points at every time step, using the approximate
iteration procedure of Marshall & Grant (1996) :
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where q is an iteration index, Q(m) is a set of control points very close to control point
m and P(m) is the complement of Q(m). The procedure (13) converges very quickly,
and the number of iterations required for convergence seems to be independent of the
number of control points. This iterative procedure can be used to simultaneously
obtain the amplitudes of both the off-centre ring-like elements and the centre blob-like
elements.
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The self-induced velocity, w
n
, of a ring-like element with Gaussian vorticity

variation in the element cross-section is given by Saffman (1970) as
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The blob-like elements, of course, have no self-induced velocity. The importance of the
element self-induced velocity, in comparison with the velocity induced by all of the
other vorticity elements, depends on the resolution of the flow field. For instance, if the
core of an isolated vortex ring is discretized by N ring-like elements, the ratio of the
self-induced propagation velocity of an element to the propagation velocity of the ring
as a whole is of order 1}N. The effect of the element self-induced velocity was examined
in numerical calculations by Strickland & Amos (1992) and Acton (1980), both of
whom concluded that for a well-resolved vorticity field the element self-induced
velocity is either very small or negligible.

Viscous diffusion is accounted for in this method using a three-dimensional
formulation of the diffusion velocity method of Ogami & Akamatsu (1991), and
corrected by Kempka & Strickland (1993) for two-dimensional flows, to adaptively
spread the vorticity support. Derivatives over the set of control points are computed
using the moving least-square method introduced by Marshall & Grant (1997), in
which a quadratic function is fit locally to the control points closest to the point at
which the derivatives are desired using a least-squares formulation. This differentiation
method maintains high accuracy even for control points which are very irregularly
spaced. An explicit second-order predictor–corrector method is used to advance the
solution in time, subject to a viscous stability restriction of the form

∆t% l #s}(2ν), (15)

where l is the minimum distance between any two control points, ν is the kinematic
viscosity and s is an adjustable constant. The diffusion scheme is stable provided that
s is less than about 7; however, in the computations reported in the present paper we
set s¯ 0.5. Details of the viscous diffusion method and validation calculations can be
found in Marshall & Grant (1997).

3. An approximate vortex interaction model

A plot of the radial variation of the axial velocity induced by the periodic vortex
rings, with infinitesimally small core radius, is given in figure 2 for a case with L}R¯ 2
and for different values of z}L. The induced axial velocity profile is observed to be
fairly uniform with r for r}R less than about 0.5 (varying by at most 15%). This
observation suggests that the dynamics of the columnar vortex, for cases where
(R®σ

R
)}σ

C
is sufficiently large, may be approximated using a model in which the rings

induce a prescribed axial flow on the columnar vortex which is uniform in the radial
direction. The ring-induced axial velocity may be approximated by assuming that the
ring core radius is small compared to the radial position of the ring centroid and by
evaluating the ring-induced axial velocity on the symmetry axis. The axial velocity at
an axial location z induced on the columnar vortex from periodic vortex rings is then
given by
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where Z
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is the axial position and Γ
R,n

the strength of ring n.
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F 2. Axial velocity profiles induced by an array of periodic identical rings with L}R¯ 2, at
axial sections z}L¯ 0, 0±2 and 0±5.

For the case of identical rings (such that Γ
R,n

¯Γ
R

for all n), the system as a whole
translates in the axial direction due to both the self-induced velocity, W

s
, of the rings

and the propagation velocity, W
!
, of each ring due to the induced velocity of all the

other rings. In a frame translating with the rings, the axial velocity induced by the rings
on the columnar vortex, w

R
®W

!
, is independent of time for identical rings. For the

case of rings of alternating sign (such that Γ
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R
), the values of W
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and W
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are equal and opposite for rings of opposite sign, so that the system as a whole is fixed
but the axial and radial locations of the rings change with time according to

dZ
n

dt
¯³(W

!,n
W

s,n
),

dR

dt
¯U

!
, (17)

where U
!
is the radial velocity induced on each ring by the other rings. In this case, the

ring-induced axial velocity w
R

is a function of both z and t.
The self-induced propagation velocity of ring n, W

s,n
, is given approximately by

(Kelvin 1867)
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The axial and radial velocity components of the nth ring induced by the other rings are
given by
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. The radial velocity U
!

is the same for all n for the two cases
considered in this paper.



Flow induced by �ortex rings around a columnar �ortex core 9

The columnar vortex dynamics can be further simplified by assuming that the axial
components of vorticity and velocity within the columnar vortex have a constant
prescribed profile in the radial direction, such that these quantities have the same
functional dependence on r}σ for all z and t, where σ(z, t) denotes the core radius of
the columnar vortex for any given z and t. For simplicity, we will henceforth assume
that both the axial vorticity and axial velocity are uniform over the cross-section of the
columnar vortex core, and that the radial and azimuthal velocity components vary
linearly with r. Letting w(z, t) denote the vortex axial velocity relative to a reference
frame translating with the mean position of the ring centroids, the centre vortex
evolution can be described by a set of two model equations for σ and w. These
equations have been previously derived (without forcing by the vortex rings) using a
variety of different approaches by Lundgren & Ashurst (1989), Marshall (1991) and
Leonard (1994), all of which yield essentially the same results for long weakly nonlinear
wave motions. In its simplest form (as given by Lundgren & Ashurst 1989), the
evolution of the columnar vortex is governed by volume conservation of the core fluid,
which requires that

dσ

dt
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2

¥w
¥z
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and by axial momentum conservation, which in the presence of the vortex rings
requires that
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is the material derivative. Equation (23) represents a balance between the rate of
change of axial momentum within the columnar vortex core and an axial force due to
the pressure gradient along the vortex axis which is induced by variation of the core
radius and the flow induced by the vortex rings.

Equations (22) and (23) admit solutions for small-amplitude waves, for which the
dispersion relationship yields the phase velocity c of the waves as

c¯Γ
C
}(o8πσ

C
). (25)

For vortex flows with axial velocity greater than the phase velocity c, upstream wave
propagation is not possible and the flow is said to be ‘supercritical ’. Similarly, vortex
flows with axial velocity less than the phase velocity are said to be ‘subcritical ’.

Equations (22) and (23) form a hyperbolic first-order system, which can be written
in the conservation form
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Numerical solution of (26) is performed using the two-step MacCormack method, in
which axial derivatives are evaluated using a forward difference on the predictor step
and a backward difference on the corrector step (Peyret & Taylor 1990). The boundary
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conditions in the z-direction assume that the flow is periodic with wavelength L, and
the initial conditions are chosen as σ(z, 0)¯σ

C
and w(z, 0)¯w

R
(z, 0)®W

S
®W

!
(for

identical rings) or w(z, 0)¯w
R
(z, 0) (for rings of alternating sign), where w

R
is given by

(16).

4. Sample calculation for standing waves on a vortex core

The vorticity collocation method described in §2 is used in the current section to
compute small-amplitude standing waves on a vortex core, and the result is compared
to an analytical solution obtained from the model equations (22) and (23) of §3 with
w

R
¯ 0. We consider small-amplitude standing waves on a columnar vortex core for

which the core radius varies as

σ(z, t)¯σ
C
A cos (αt) cos (kz), (27)

where k¯ 2π}L is the wavenumber and α is the oscillation frequency. The solution of
the system (22) and (23), after linearizing for small A}σ

C
, yields an expression for the

wave period p¯ 2π}α as
p¯ 4o2π#σ

C
}(kΓ

C
). (28)

Calculations using the vorticity collocation method were performed for the evolution
of a columnar vortex which was initially perturbed by a variation in core radius in the
form of a cosine wave, with wave amplitude of 10% of the mean core radius, and
wavelength equal to four times the mean core radius. The core is discretized by 1619
ring-like vorticity elements for off-centre points and 81 blob-like elements are placed
along the symmetry axis. The axial component of the initial vorticity field is specified
to be independent of r and to vary with z in such a way that the circulation remains
constant along the vortex axis. The radial component of the initial vorticity is specified
to vary linearly with r, such that the vorticity vector is parallel to the core boundary
for the outermost points on the vortex core. One period on each side of the computed
section is used in the velocity calculation.

The computations using the vorticity collocation method yield a standing wave on
the vortex core which oscillates nearly periodically in time. The radial and axial
velocity components within the standing wave are shown in figures 3(a) and 3(b), using
an arrow attached to each control point, for times separated by about one-half of the
oscillation period. In these figures, the dimensionless time is defined as t*3 tΓ

C
}σ#

C
.

The axial motion within the standing wave is generated by oscillating azimuthal
vorticity, which forms when the predominantly axial vorticity component is tilted in
the azimuthal direction by an axial gradient in the swirl velocity, which arises from
variation of the core radius. The core radius variation also causes a radial tilting of the
vorticity vector which, in the presence of the ambient radial gradient of the swirl rate
near the edge of the vortex core, leads to additional accumulation of the azimuthal
vorticity. In the resulting wave motion, the azimuthal vorticity magnitude attains a
minimum value when the slope of the core boundary is greatest, and vice versa. A
contour plot of the azimuthal vorticity field, obtained by interpolating the vorticity
onto a 81¬201 grid in the (r, z)-plane using the representation (4), is shown in figure
4 at the same two times as used in the velocity vector plots of figure 3. The reversal of
the azimuthal vorticity which occurs during the wave oscillation is clearly evident in
this plot.

The average value of the element radius during the computations was found to be
0.12σ

C
, so that the effective core radius of the columnar vortex is approximately
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1.12σ
C
. The predicted oscillation period (non-dimensionalized by σ#

C
}Γ

C
) from (28)

using this effective core radius is 39.8. The oscillation period observed in the numerical
computation is about 42.3. The preceding results establish the validity of the numerical
model to describe the dynamics of the columnar vortex, in the absence of wrapped
vortices.

5. The case of identical vortex rings

The computational approaches introduced in §§2 and 3 are now applied to the
problem of vortex rings wrapped around a columnar vortex for the case of identical
vortex rings. Calculations are first presented based on the approximate model
described in §3 in order to explain the qualitative nature of the columnar vortex
response to the ring-induced flow. Computations using the vorticity collocation
method are then presented to examine the flow field in cases where the approximate
model is not adequate.

5.1. Results from the approximate model

The system of equations (22) and (23) describing the columnar vortex model can be
linearized for small perturbations σ« of the core radius and small axial velocities w to
yield the system

¥σ«
¥t


σ
C

2

¥w
¥z

¯ 0,
¥w
¥t


Γ #

C

4π#σ$
C

¥σ«
¥z

¯ 0. (29)

The forcing term in (23) due to the ring-induced flow, which is independent of time for
the case of identical rings (in a frame translating with the rings), is of second order in
the axial velocity and hence does not appear in (29). Since the ring-induced axial
velocity w

R
has a form very similar to a cosine function for the case of identical rings

(see figure 5a), we consider briefly the idealization

w
R
(z)¯A

"
cos (2πz}L)A

#
, (30)

where the constants A
"
and A

#
are obtained by fitting the form (30) to the prediction

of (16). The linearized system (29) then yields standing wave solutions for σ« and w of
the form

σ«(z, t)¯
σ
C

A
"

2c
sin 02πz

L 1 sin 02πt

p 1 , (31a)

w(z, t)¯A
#
A

"
cos 02πz

L 1 cos 02πt

p 1 , (31b)

where p is the oscillation period defined by (28).
Results of a computational solution of the nonlinear system (22) and (23) for rings

which are much weaker than the columnar vortex (Γ
R
}Γ

C
¯ 0.2) are given in figure

5(a–d ), where the core radius is indicated by a solid curve and the axial velocity by a
dashed curve. The initial condition is shown in figure 5(a), where the core radius is
constant and the axial velocity is equal to the ring-induced velocity w

R
plus a constant

due to the translation of the rings. The flow evolves initially in a manner similar to that
which would be expected from the standing wave solution (31), namely the core radius
deforms approximately in the shape of a sine wave and the axial velocity decreases in
amplitude and eventually reverses direction, while remaining approximately in the
shape of a cosine wave (figure 5b). However, as time progresses, the nonlinear forcing
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F 5. Variation of core radius (solid curve) and axial velocity (dashed curve) on the columnar
vortex, obtained using the model of §3, for the case of identical vortex rings which are much weaker
than the columnar vortex (Γ

R
}Γ

C
¯ 0±2). The area-varying waves on the columnar vortex oscillate

similar to a standing vortex, but also exhibit a slow upstream propagation relative to the vortex rings,
with bounded core radius displacement amplitude of less than 6% of the nominal value, σ

C
. Other

parameters are R}σ
C
¯ 2 and L}σ

C
¯ 4, and the dimensionless times are (a) t*¯ 0, (b) t*¯ 14±0,

(c) t*¯ 24±0 and (d ) t*¯ 36±0.

term in (23), proportional to w
R
(¥w

R
}¥z), causes the wave in core radius to propagate

slowly upstream, as is evident by the offset positions of the wave crest and trough in
figure 5(c). At the end of one oscillation period p, the core radius is again nearly
uniform and the amplitude of the axial velocity variation is nearly the same as in the
initial configuration; however, the axial velocity has propagated roughly one-fifth of
a wavelength upstream on the vortex axis (figure 5d ). This sequence of variation of the
core radius and axial velocity was followed computationally for over ten periods of
oscillation, during which time the slow upstream propagation of the wave continued
but the amplitude of oscillation of the core radius never increased above about 6% of
the nominal core radius.

Results of a computation for a case with much stronger rings, such that the ring
strength is similar to that of the columnar vortex (Γ

R
}Γ

C
¯ 1), are given in figure

6(a–d ). The core radius initially deforms into a sine-wave shape, as for the case with
weak vortex rings. However, for cases with strong vortex rings, the amplitude of the
axial velocity also becomes large, such that it is possible for the flow on the columnar
vortex to exhibit a critical point at which the axial flow is equal to the axial wave phase
velocity c in (25). For the flow shown in figure 6, the phase speed predicted by (25) is
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F 6. Variation of core radius (solid curve) and axial velocity (dashed curve) on the columnar
vortex, obtained using the model of §3, for the case of identical vortex rings with strength similar to
that of the columnar vortex (Γ

R
}Γ

C
¯ 1). Wave energy is trapped on the columnar vortex core

downstream of a critical point, such that the wave amplitude continues growing and the wave
becomes progressively steeper with time. The dimensionless times are (a) t*¯ 0, (b) t*¯ 9±0,
(c) t*¯ 17±0 and (d ) t*¯ 21±0.

c¯ 0.113, so that critical points occur in the initial configuration in figure 6(a) at z}σ
C

equal to 0.6 and 3.4. As the wave propagates upstream due to the nonlinear forcing
term, as described in the last paragraph, it is blocked by the transition from subcritical
to supercritical flow at the critical flow, leading to a trapping of wave energy just
downstream of the critical point. The trapped wave energy manifests itself in the
formation of a wave in core radius which grows in amplitude and becomes progressively
steeper in time on the subcritical side of the critical point, as shown in figures 6(c) and
6(d ). The core radius variation at the critical point eventually becomes so steep that the
numerical method used to solve (22) and (23) yields spurious small-scale squiggles (see
the discussion in Peyret & Taylor 1990, p. 49) and must be stopped. We note that a
somewhat similar energy trapping mechanism was previously proposed by Randall &
Leibovich (1973) as a model for vortex breakdown. Also, Marshall (1993) showed that
for a system similar to (22) and (23), with a term due to ambient pressure gradient
replacing the ring-induced forcing terms, the amplitude of upstream-propagating
waves on the vortex core becomes unbounded at the critical point in the linear theory.
This analysis was repeated for the system (22) and (23) for the present problem,
yielding the same result.
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5.2. Computational results from the �orticity collocation method

Computations were performed using the axisymmetric vorticity collocation method
described in §2 to examine the columnar and ring vortex interaction when the
conditions for validity of the approximate model given in §3 are exceeded. The
computations follow the evolution of a single period of the vortex in the axial direction,
where a sufficient number of additional periods of the vorticity field on each side of the
computed section are used in the Biot–Savart calculation to ensure that the velocity
deviates from periodic by no more than 3%. The required number of additional
periods was set by the criterion [(L}R)#1]−$/#! 0.03, which was developed using an
error estimate based on the flow generated by a periodic series of vortex rings.

The vorticity within the ring is discretized using 316 ring-like vorticity elements,
which are grouped together to form a torus. The columnar vortex is initiated using
2020 ring-like vorticity elements and 101 blob-like elements along the symmetry axis.
The vorticity elements in the columnar vortex were initially spaced an equal distance
apart, with 21 elements across the core radius at each of 20(L}σ

C
)1 axial locations,

and then the control point locations were randomly perturbed by up to 30% of their
initial separation distances prior to start of the computations. The vorticity field within
the columnar vortex is specified to be initially uniform and oriented in the axial
direction. The vorticity within the ring is oriented in the azimuthal direction, and the
vorticity magnitude is initially specified to be proportional to the distance r from the
symmetry axis. The flow was evolved using an explicit two-step predictor–corrector
method. For viscous flow calculations, the time step was set adaptively using the
criterion (15) with s¯ 2. For all computations reported here, the flow parameters were
set such that σ

C
}σ

R
¯ 2 and R}σ

C
¯ 2, and the equations of motion are inviscid unless

otherwise stated.
The first set of calculations examines the stability of the vortex ring cores as the value

of the ratio L}σ
R

is varied. For very large values of L}σ
R

the core shape of the vortex
rings remains fairly circular during the calculation, but as this ratio is decreased the
core of the rings become progressively more deformed. If L}σ

R
is decreased below

some critical value, the ring cores become unstable and flatten out. An example
illustrating the consequences of the ring core instability is shown in figure 7(a–d ) for
a case with L}σ

R
¯ 4, Γ

C
}Γ

R
¯ 1 and three periods of the vorticity field used on each

side of the computed section. The deformation of the ring cores is observed to become
progressively more pronounced with time in figure 7(a–c), until the cores of
neighbouring vortices overlay each other to form a continuous ‘sheath’ enclosing the
columnar vortex (figure 7d ). The ring core instability occurs sufficiently quickly that
only very small wave motions on the columnar vortex are observed.

The instability of the ring cores results from straining on each ring due to the velocity
induced by the other rings. Since the vorticity within the centre vortex is predominantly
oriented in the axial direction, and therefore has negligible effect on the interaction of
the rings with each other, a series of calculations was performed using only the ring
vortices in order to determine a criterion for ring core instability. The calculations were
performed for a case with R}σ

R
¯ 4 and for different values of L}σ

R
, using 5 periods

on each side of the computed ring. The ring cores are found to be unstable (leading to
merger of the ring cores into a continuous layer) whenever the ratio L}σ

R
is less than

4.8³0.2, and to be stable when L}σ
R

is greater than this value. Calculations with a
larger number of periods and with different values of R}σ

R
indicate that the critical

value of L}σ
R

is not sensitive to these parameters, although calculations were not
performed with very small R}σ

R
values. The critical L}σ

R
value for vortex core
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F 7. Velocity vectors in the (r, z)-plane obtained from direct computation of the ring–columnar
vortex interaction, using the vorticity collocation method, for a case with identical rings and small
ring spacing (L}σ

R
¯ 4). The ring cores are unstable and spread out into a ‘sheath’ surrounding the

columnar vortex core. Other parameters are Γ
R
}Γ

C
¯ 1, R}σ

C
¯ 2 and L}σ

C
¯ 2, and the

dimensionless times are (a) t*¯ 0±8, (b) t*¯ 2±8, (c) t*¯ 6±8 and (d ) t*¯ 9±8.

instability for an infinite row of initially circular two-dimensional vortex patches of the
same strength was obtained as 4.5 by Ferziger (1980) using a theoretical argument,
which is quite close to the value obtained numerically in the present study for core
instability of vortex rings.

It is possible that the ‘sheath’ about the columnar vortex formed by the remnants
of the ring vortices (figure 7d ) may eventually roll up to form new ring vortices with
a larger value of the period L. Repeated vortex breakup and formation in a two-
dimensional shear layer was reported, for instance, by Manin (1992). However, since
our primary interest in the current paper is in the columnar vortex response, rather
than interaction of the ring vortices, we shall limit consideration in the following to
cases where breakup of the ring vortices does not occur.

When the rings are spaced sufficiently far apart that the cores are stable, the ring-
induced flow causes the formation of area-varying waves on the vortex core, the
amplitude of which increases with increase in the ring strength. We have already
described the oscillatory nature of the columnar vortex waves and the slow upstream
propagation of these waves due to nonlinear effects for weak vortex rings (using the
model described in §3), and we now seek to examine the deviation of the columnar
vortex evolution from this behaviour when the ring vortices are fairly strong. To this
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F 8. Velocity vectors in the (r, z)-plane obtained from direct computation of the ring–columnar
vortex interaction, using the vorticity collocation method, for a case with identical rings and
Γ

R
}Γ

C
¯ 1. A sharp cusp forms at the wave crest, from which vorticity is ejected away from the

columnar vortex into the flow. Other parameters are R}σ
C
¯ 2, σ

C
}σ

R
¯ 2 and L}σ

C
¯ 4, and the

flow is inviscid. The dimensionless times are (a) t*¯ 0±8, (b) t*¯ 8±8, (c) t*¯ 18±8 and (d ) t*¯ 26±8.

end, the results of a calculation using the vorticity collocation method for strong vortex
rings (Γ

R
}Γ

C
¯ 1) with spacing given by L}σ

R
¯ 8 are shown in figure 8(a–d ) (for the

velocity field in the r, z-plane), for a case with two periods of the vorticity field on each
side of the computed section. The parameter values used in this calculation are the
same as those used to obtain figure 6, which was based on the approximate model of
§3, and the flow is inviscid.

In this computation, the ring-induced velocity field is initially observed to cause the
formation of a wave in the columnar vortex which travels with the rings, similar to that
shown in figure 6(b). However, when the amplitude of the wave becomes sufficiently
large (at about 50% of the nominal core radius) a sharp cusp is observed to form at
the wave crest (figure 8b). Vorticity from the columnar vortex is ejected from this cusp
in the form of a very thin vortex sheet, which is drawn upward by the rings (figure 8c).
As the ejected vorticity sheet is drawn out from the columnar vortex, the point of
attachment of this sheet with the columnar vortex also moves slowly downstream. A
large-amplitude wave in the columnar vortex develops just upstream of the sheet
attachment point, resulting eventually in ejection of a large bulk of the columnar vortex
(figure 8d ).

Streamlines in the (r, z)-plane and a contour plot of the azimuthal velocity are given
in figures 9(a) and 9(b) at a time when a vortex sheet has just been ejected from the
columnar vortex (corresponding to figure 8c). Both of these plots were obtained by
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evaluating the velocity on a 151¬201 uniform grid. The streamlines in the (r, z)-plane
are dominated by the vortex rings and seem to be relatively unaffected by the ejected
vortices. By contrast, the azimuthal velocity in figure 9(b) is not significantly affected
by the rings, but clearly shows the effect of the large-amplitude wave on the columnar
vortex core.

The vorticity vectors in the (r, z)-plane and a contour plot of the azimuthal vorticity
are shown in figures 9(c) and 9(d ) at this same time. The ejected vorticity sheet in figure
9(c) is two-sided, such that the direction of the vorticity vector is opposite on opposite
sides of the sheet. Since the ejected vorticity sheet is stretched by the ring-induced flow,
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F 9. Plots examining the ring-induced eruption from an inviscid columnar vortex for the case
in figure 8 at dimensionless time t*¯ 18±8. (a) Streamlines in the (r, z)-plane, (b) azimuthal velocity
contours, (c) vorticity vectors in the (r, z)-plane and (d ) azimuthal vorticity contours.

the vorticity in this sheet can become large after long time for an inviscid flow. The
contour plot for the azimuthal vorticity was obtained by interpolating vorticity onto
a 151¬201 grid in the (r, z)-plane using the representation (4). The ejected sheet
appears to be much thicker in the contour plot in figure 9(d ) than in figure 9(c) due
to use of the interpolation (4) with finite-radius vorticity elements.
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F 10. Vorticity field for a calculation with the same parameters values and at the same time as
in figure 9, except that the flow is viscous, with a vortex Reynolds number Re¯ 1000. The vorticity
vectors in the (r, z)-plane are shown in (a) and a contour plot of the azimuthal vorticity is shown
in (b).

This calculation was repeated for viscous flow with several different values of the
vortex Reynolds number (Re3Γ

C
}ν). For instance, the vorticity field is shown in

figure 10 for a calculation with the same parameter values and at the same time as in
figure 9, but for a viscous flow with Re¯ 1000. The wave formation and subsequent
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ejection of vorticity occurs in a similar manner for viscous and inviscid flows, as
evidenced by the similarity in the vorticity field within the ring and the columnar vortex
in figures 9 and 10. However, for the viscous flow shown in figure 10, the vorticity
within the ejected vortex sheet is observed to rapidly diffuse into a thick region with
very weak vorticity (such that the ejected vorticity is hardly visible in figure 10), while
in the inviscid flow the ejected vorticity remains in a thin sheet and can become quite
strong as it is stretched by the ring-induced flow. It is noted that since a Lagrangian
computational method is used to obtain these plots, there is almost no numerical
dissipation to contaminate the inviscid flow calculation.

6. The case of vortex rings of alternating sign

6.1. Results from the columnar �ortex model

For the case of rings of alternating sign, the ring-induced axial velocity w
R

has a form
very similar to a sine function (see figure 11a), so we consider the idealization

w
R
(z)¯A

"
sin (2πz}L)A

#
, (32)

where the constants A
"
and A

#
are obtained by fitting the form (32) to the prediction

of (16). If we assume that the motion of the rings is so small as to be negligible during
the wave period p, the linearized system (29) yields standing wave solutions for σ« and
w of the form

σ«(z, t)¯
σ
C

A
"

2c
cos 02πz

L 1 sin 02πt

p 1 , (33a)

w(z, t)¯A
#
A

"
sin 02πz

L 1 cos 02πt

p 1 . (33b)

Results of a computational solution for the nonlinear system (22) and (23) for the
case of fairly weak rings (Γ

R
}Γ

C
¯ 0.2) of alternating sign are shown in figure 11(a–d ).

The core radius and axial velocity are observed to oscillate as a standing wave, with no
tendency to propagate along the vortex axis (as was observed for the case of identical
rings). As time progresses, vortex rings of opposite sign approach each other and
propagate radially outward. This causes higher-frequency waves to form in the axial
velocity in figure 11(c) and a narrowing of the peak in core radius in figure 11(d ). The
core radius is nearly uniform in figure 11(d ) and the axial velocity has a shape similar
to that in the initial configuration, with a somewhat steeper slope near the centre.
However, the observed time in figure 11(d ) is about 50% longer than the predicted
period from (28). The maximum deflection of the core radius and the maximum axial
velocity on the columnar vortex both increase as the ring strength increases. For
instance, results of a calculation with Γ

R
}Γ

C
¯ 1 given in figure 12(a, b) show that the

peak in core radius can become quite large compared to the minimum core radius.

6.2. Computational results from the �orticity collocation method

Calculations based on the vorticity collocation method are used to examine the
possibility of entrainment of vorticity from the columnar vortex by the rings as the
wave amplitude on the columnar vortex becomes large. Because two rings are
contained within each period of the flow for cases with rings of alternating sign, L}R
is sufficiently large that we need include only one period of the vorticity field on each
side of the computed section to achieve the desired accuracy in the computations in
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F 11. Variation of core radius (solid curve) and axial velocity (dashed curve) on the columnar
vortex, obtained using the model of §3, for the case of vortex rings with alternating sign. The rings
are much weaker than the columnar vortex (Γ

R
}Γ

C
¯ 0±2), and area-varying waves on the columnar

vortex oscillate as standing waves on the vortex core. The waves are not periodic, but exhibit a peak
which grows gradually narrower with time due to the motion of the vortex ring pair which forces the
flow. Other parameters are R}σ

C
¯ 2 and L}σ

C
¯ 6, and the dimensionless times are (a) t*¯ 0,

(b) t*¯ 18±0, (c) t*¯ 42±0 and (d ) t*¯ 54±0.

this section. An initial calculation was performed for the case of fairly weak rings
(Γ

R
}Γ

C
¯ 0.2), for a viscous flow with Re¯ 1000 and with one period on each side of

the computed section. The parameter values for this computation are the same as those
used to generate figure 11. The velocity field at three different time steps is shown in
figure 13(a–c). Just after the flow is started (figure 13a), the ring-induced velocity
causes the formation of a wave on the columnar vortex. The amplitude of this wave is
similar to that predicted by the approximate model of §3, as can be seen by comparing
figure 13(b) and figure 11(b), which are plotted at approximately the same times. The
displacement of the core radius causes the generation of azimuthal vorticity on the
columnar vortex, which resists the wave formation and eventually causes the wave to
recede (figure 13c). However, we do observe that a small amount of vorticity from the
columnar vortex is entrained into the rings in figure 13(c).

Results of a calculation with much stronger vortex rings (Γ
R
}Γ

C
¯ 1) are shown in

figure 14(a–d ) for the velocity components in the (r, z)-plane, for a viscous flow with
Re¯ 1000. The parameters for this calculation are the same as those used to
generate figure 12, which was obtained using the model of §3. In the direct calculations
with the vorticity collocation method, the ring-induced flow is observed to induce a
large-amplitude wave on the columnar vortex, which appears similar to that predicted
in figure 12(b). Although azimuthal vorticity is generated on the columnar vortex core,
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F 12. Variation of core radius (solid curve) and axial velocity (dashed curve) on the columnar
vortex, obtained using the model of §3, for the case of vortex rings with alternating sign. The rings
have a strength similar to that of the columnar vortex (Γ

R
}Γ

C
¯ 1), and the columnar vortex responds

to the ring-induced velocity by formation of a large-amplitude peak in the core radius. Other
parameters are R}σ

C
¯ 2 and L}σ

C
¯ 6, and the dimensionless times are (a) t*¯ 0 and (b) t*¯ 10±0.

it is insufficient to counter the ring-induced flow. The wave amplitude is thus observed
to continue growing in time, leading to an ejection of vorticity from the columnar
vortex in the form of a two-sided sheet. This sheet is initially much thicker in the
present case of rings of alternating sign than was observed for identical rings in §5, and
the ejected vorticity is consequently much less effected by viscous diffusion. As the rings
propagate radially outward, away from the columnar vortex, the magnitude of the
ring-induced velocity decreases near the columnar vortex. After the rings propagate a
sufficient distance away, the flow induced by the azimuthal vorticity within the
columnar vortex is able to dominate the ring-induced flow, thus allowing the wave in
vortex core radius to decrease in amplitude (figure 14d ). As the ejected vorticity is
pulled radially outward by the vortex rings and the wave on the columnar vortex begins
to recede, the ejected vorticity is rapidly stretched in the radial direction. This
stretching causes the ejected vortex sheet to become very thin and to dissipate rapidly.

Streamlines in the (r, z)-plane and a contour plot of the azimuthal velocity are shown
in figures 15(a) and 15(b) for a time corresponding to that in figure 14(c). Both plots
were obtained by evaluating the velocity on a 301¬201 uniform grid. The streamlines
in the (r, z)-plane show both the rotation induced by the vortex ring pair and that
induced by the azimuthal vorticity within the columnar vortex. The azimuthal velocity
shows a strong decrease where the vorticity from the columnar vortex has been pulled
outward by the rings.
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F 13. Velocity vectors in the (r, z)-plane obtained from direct computation of the ring–columnar
vortex interaction, using the vorticity collocation method, for a case with fairly weak rings
(Γ

R
}Γ

C
¯ 0±2) of alternating sign. A wave on the columnar vortex forms due to the ring-induced flow,

which then subsides due to the azimuthal vorticity field generated by the core radius variation. The
response of the columnar vortex to the ring-induced flow is primarily to generate a standing wave,
although a small amount of vorticity from the columnar vortex is entrained by the ring pair. Other
parameters are R}σ

C
¯ 2, σ

C
}σ

R
¯ 2, and L}σ

C
¯ 6. The flow is viscous with Re¯ 1000. The

dimensionless times are (a) t*¯ 1±6 (b) t*¯ 18±4 and (c) t*¯ 31±1.

The vorticity vectors in the (r, z)-plane and a contour plot of the azimuthal vorticity
are shown in figures 15(c) and 15(d ) for the same time as in figure 14(c) and again in
figures 16(a) and 16(b) for the later time used in figure 14(d ). The vorticity vectors
within the ejected vortex sheet are in opposite directions on opposite sides of the sheet
(figures 15c and 16a). As the vorticity sheet becomes very stretched out by the ring-
induced flow, the number of vorticity control points across the sheet reduces to only
a few. Because of the high shear across the sheet, the vorticity vectors at the control
points become subject to a numerical instability as the resolution deteriorates in which
a slight wobble in the vector direction leads to large stretching of the vorticity. This
stretching is countered by rapid diffusion of the vorticity sheet, which limits the
magnitude of the vorticity vectors and hence does not lead to global breakdown of the
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F 14. Velocity vectors in the (r, z)-plane obtained from direct computation of the ring–columnar
vortex interaction, using the vorticity collocation method, for a case with fairly strong rings
(Γ

R
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C
¯ 1) of alternating sign. Vorticity from the columnar vortex is entrained by the pair of

oppositely signed vortex rings, leaving a thin two-sided sheet of vorticity trailing behind. Other
parameters are R}σ

C
¯ 2, σ

C
}σ

R
¯ 2, and L}σ

C
¯ 6. The flow is viscous with Re¯ 1000. The

dimensionless times are (a) t*¯ 0±7 (b) t*¯ 5±2, (c) t*¯ 9±6 and (d ) t*¯ 13±1.

calculation. At long time (e.g. figures 16a and 16b), the ejected vorticity dissipates
away nearly completely and the ring evolution is similar to that depicted in the
numerical simulations of colliding axisymmetric rings by Shariff et al. (1988).

7. Conclusions

The response of a columnar vortex to periodic stretching and compression induced
by vortex rings wrapped around the columnar vortex core is studied using both an
approximate model of the columnar vortex dynamics and by numerical solution of the
Euler and Navier–Stokes equations in the vorticity–velocity formulation. The ring-
induced flow leads to area-varying wave formation on the columnar vortex core. The
wave growth on the columnar vortex is resisted by the accumulation of azimuthal
vorticity, which is generated due to variation in the core radius. Similarly, in the
context of a momentum balance for the columnar vortex core (as used in the
Lundgren–Ashurst 1989 model employed in §3), the variation in core radius causes an
axial variation in mean pressure across the core, leading to an axial force that resists
the core area variation. For sufficiently weak ring vortices, the forcing due to the rings
and the restoring motions of the columnar vortex core combine to produce an
oscillatory growth and decay of the wave amplitude, where the maximum wave
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amplitude is bounded in time. When the rings are sufficiently strong, vorticity from the
columnar vortex will be ejected radially outward from the wave crests. This ejected
vorticity will be carried away from the columnar vortex by the rings in the form of a
double-sided vorticity sheet (where the vorticity points in opposite directions on
opposing sides of the sheet). The ejected vorticity is rapidly stretched and (for a viscous
fluid) dissipated by the ring-induced flow.

The formation of vortices wrapped around a columnar vortex core is certainly a
common occurrence in many turbulent flows, as noted in numerous experimental and
direct and large-eddy simulation studies (e.g. Bernal & Roshko 1986; Glezer & Coles
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F 15. Plots examining the ring-induced eruption from an inviscid columnar vortex for the case
in figure 14 at dimensionless time t*¯ 9±6. (a) Streamlines in the (r, z)-plane, (b) azimuthal velocity
contours, (c) vorticity vectors in the (r, z)-plane and (d ) azimuthal vorticity contours.

1990; Lesieur 1995; Melander & Hussain 1993; Sreedhar & Ragib 1994), and is
perhaps the most important type of interaction between turbulent eddies of significantly
different strengths. The process of ejection of vorticity from the columnar vortex and
subsequent rapid diffusion as the ejected vorticity is stretched by the rings, as illustrated
by the numerical computations reported in this paper, suggests an interesting
mechanism for energy cascade in turbulent flows. In the proposed cascade process, the
wrapped vorticity (i.e. the rings) acts somewhat like a catalyst, since the ejected
vorticity does not change the structure of the rings, but rather passes directly from the
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F 16. Vorticity field for the case in figure 14 at time t*¯ 13±1. The vorticity vectors in the
(r, z)-plane are shown in (a) and a contour plot of the azimuthal vorticity is shown in (b). Stretching by
the rings has made the ejected vorticity layer very thin, leading to rapid dissipation of the ejected
vorticity.

larger scale of the columnar vortex to the smaller scale of the double-sided ejected
vortex sheet. While rings of alternating sign propagate toward each other and radially
outward from the columnar vortex in the axisymmetric simulations shown in the
present paper, three-dimensional instability of opposite sign rings (Lim & Nickels
1992) and subsequent vortex wrapping around the columnar vortex may make possible
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a state in which statistical measures of the vortex rings are steady. It is noted that even
for Reynolds numbers for which the dissipation of the columnar vortex is completely
negligible, the ejected vorticity can dissipate quite rapidly as it is stretched by the rings.
Dritschel & Zabusky (1996) argue in a recent paper that a similar process in two-
dimensional flows, in which a pair of opposite-sign vortex patches cause a third vortex
patch to elongate into a thin sheet-like shape, plays a critical role in the cascade process
in two-dimensional turbulence.
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